Como construir sistema de negociação algorítmica


Negociação Algorítmica.


Desenvolva sistemas de negociação com MATLAB.


A negociação algorítmica é uma estratégia comercial que usa algoritmos computacionais para gerar decisões comerciais, geralmente nos mercados financeiros eletrônicos. Aplicado em instituições de compra e venda, a negociação algorítmica é a base da negociação de alta freqüência, da negociação FOREX e da análise de riscos e execução associada.


Construtores e usuários de aplicativos de negociação algorítmica precisam desenvolver, testar e implementar modelos matemáticos que detectem e explorem os movimentos do mercado. Um fluxo de trabalho efetivo envolve:


Desenvolvimento de estratégias de negociação, utilizando métodos temporais técnicos, métodos de aprendizagem mecânica e métodos de séries temporais não-lineares Aplicação de computação paralela e de GPU para teste de tempo eficiente e identificação de parâmetros Cálculo de lucro e perda e realização de análise de risco Execução de análise de execução, como modelagem de impacto de mercado, análise de custos de transações e detecção de iceberg Incorporando estratégias e análises em ambientes de negociação de produção.


Exemplos e como fazer.


Análise Walk-Forward: usando o MATLAB para testar sua estratégia comercial 35:15 - Webinar Cointegration e Pairs Trading com Econometria Toolbox 61:27 - Webinar Servidor de Produção MATLAB para Aplicações Financeiras 38:28 - Webinar Começando com o Trading Toolbox, Parte 1: Conecte-se para Interactive Brokers 7:22 - Video CalPERS Analisa a Dinâmica do Mercado de Moedas para Identificar Oportunidades de Negociação Intraday - História do Usuário Negociação Quantitativa: Como Construir Seu Próprio Negócio de Negociação Algorítmica, por Ernest Chan - Algorithmic Trading - Algorithmic Trading Code e Outros Recursos - Arquivo Exchange Financial Analysis & amp; Trading - MathWorks Consulting.


Referência de Software.


Funções da Caixa de Ferramentas de Negociação - Aplicação de Aprendizagem de Classificação de Documentação: Estatística e Ferramenta de Aprendizagem de Máquina Aplicação: gráfico de média móvel móvel e atrasado - Caixa de Ferramentas Financeiras Função sharpe: cálculo de taxa de Sharpe - Função de Caixa Financeira gaoptimset: Criar estrutura de opções de algoritmo genético - Otimização Global Toolbox Function Cointegration Testing - Econometria Toolbox Functions Neural Network Time Series Tool - Neural Network Toolbox Documentação.


Escolha o seu país.


Escolha o seu país para obter conteúdo traduzido, quando disponível, e veja eventos e ofertas locais. Com base na sua localização, recomendamos que você selecione:.


Você também pode selecionar um local da seguinte lista:


Canadá (Inglês) Estados Unidos (Inglês)


Bélgica (Inglês) Dinamarca (Inglês) Deutschland (Deutsch) España (Español) Finlândia (Inglês) França (Français) Irlanda (Inglês) Italia (Italiano) Luxemburgo (Inglês)


Holanda (Inglês) Noruega (Inglês) Österreich (Deutsch) Portugal (Inglês) Suécia (English) Suíça Deutsch English Français Reino Unido (Inglês)


Ásia-Pacífico.


Austrália (Inglês) Índia (Inglês) Nova Zelândia (Inglês) 中国 (简体 中文) 日本 (日本語) 한국 (한국어)


Explore produtos.


Experimente ou compre.


Aprenda a usar.


Obter Suporte.


Sobre o MathWorks.


Acelerando o ritmo da engenharia e da ciência.


MathWorks é o principal desenvolvedor de software de computação matemática para engenheiros e cientistas.


Como codificar seu próprio robô Algo Trading.


Já quis tornar-se um comerciante algorítmico com a capacidade de codificar seu próprio robô comercial? E ainda, você está frustrado com a quantidade de informações desorganizadas, enganosas e falsas promessas de prosperidade durante a noite? Bem, Lucas Liew, criador do curso de negociação algorítmica on-line AlgoTrading101, pode ter a solução para você. Tendo excelentes revisões e recebendo mais de 8.000 estudantes desde o primeiro lançamento em outubro de 2014, o curso de Liew - destinado a apresentar os fundamentos da negociação algorítmica de forma organizada - está sendo bastante popular. Ele é inflexível sobre o fato de que a negociação algorítmica é "não um esquema rápido e rápido". Com base em idéias de Liew e seu curso, delineadas abaixo estão os fundamentos do que é preciso para projetar, construir e manter seu próprio robô de negociação algorítmica .


O que é um Robô de Negociação Algorítmico.


No nível mais básico, um robô de negociação algorítmica é um código de computador que tem a capacidade de gerar e executar sinais de compra e venda nos mercados financeiros. Os principais componentes desse robô incluem regras de entrada que indicam quando comprar ou vender, regras de saída indicando quando fechar a posição atual e regras de dimensionamento de posição que definem as quantidades para comprar ou vender. (Para mais, veja: Noções básicas de negociação algorítmica: conceitos e exemplos.)


As principais ferramentas.


Obviamente, você vai precisar de um computador e uma conexão com a Internet. Depois disso, será necessário um sistema operacional Windows ou Mac para executar o MetaTrader 4 (MT4), uma plataforma de negociação eletrônica que usa o MetaQuotes Language 4 (MQL4) para codificar as estratégias de negociação. Embora o MT4 não seja o único software que se possa usar para construir um robô, ele possui uma série de benefícios significativos.


Enquanto a principal classe de ativos da MT4 é câmbio (FX), a plataforma pode ser usada para negociar ações, índices de ações, commodities e Bitcoins usando CFDs. Outros benefícios de usar o MT4 em oposição a outras plataformas incluem ser fácil de aprender, tem inúmeras fontes de dados FX disponíveis e é grátis. Infelizmente, o MT4 não permite a negociação direta em mercados de ações e futuros e a realização de análises estatísticas pode ser onerosa; no entanto, o MS Excel pode ser usado como uma ferramenta estatística suplementar.


Estratégias de negociação algorítmica.


É importante começar por refletir sobre alguns traços essenciais que toda estratégia de negociação algorítmica deve ter. A estratégia deve ser prudente no mercado em que é fundamentalmente sólida do ponto de vista do mercado e econômico. Além disso, o modelo matemático utilizado no desenvolvimento da estratégia deve basear-se em métodos estatísticos sólidos.


Em seguida, é crucial determinar quais informações o seu robô pretende capturar. Para ter uma estratégia automatizada, seu robô precisa ser capaz de capturar ineficiências de mercado identificáveis ​​e persistentes. As estratégias de negociação algorítmica seguem um conjunto rígido de regras que aproveitam o comportamento do mercado e, portanto, a ocorrência de uma ineficiência única do mercado não é suficiente para construir uma estratégia. Além disso, se a causa da ineficiência do mercado não for identificável, não haverá maneira de saber se o sucesso ou o fracasso da estratégia foi devido ao acaso ou não.


Com o acima em mente, existem vários tipos de estratégia para informar o design do seu robô de negociação algorítmica. Estes incluem estratégias que aproveitam (i) notícias macroeconômicas (por exemplo, mudanças na folha de pagamento ou na taxa de juros não agrícolas); (ii) análise fundamental (por exemplo, usando dados de receita ou notas de versão de resultados); (iii) análise estatística (por exemplo, correlação ou co-integração); (iv) análise técnica (por exemplo, médias móveis); (v) a microestrutura do mercado (por exemplo, infração de arbitragem ou comercial); ou (vi) qualquer combinação do acima. (Para leitura relacionada, veja: O que é a eficiência do mercado?)


Projetando e testando seu robô.


Existem essencialmente quatro etapas necessárias para construir e gerenciar um robô comercial:


Pesquisa preliminar: esta etapa se concentra no desenvolvimento de uma estratégia que se adapte às suas próprias características pessoais. Fatores como perfil de risco pessoal, compromisso de tempo e capital comercial são importantes para pensar quando desenvolver uma estratégia. Você pode então começar a identificar as persistentes ineficiências do mercado mencionadas acima. Tendo identificado uma ineficiência do mercado, você pode começar a codificar um robô comercial adequado às suas próprias características pessoais.


Backtesting: Esta etapa se concentra em validar seu robô comercial. Isso inclui verificar o código para se certificar de que está fazendo o que deseja e entender como ele se realiza em diferentes intervalos de tempo, aulas de ativos ou diferentes condições de mercado, especialmente em eventos tipo cisne preto, como a crise financeira global de 2008.


Otimização: Então, agora você codificou um robô que funciona e, nesta fase, você deseja maximizar seu desempenho ao mesmo tempo em que minimiza o viés de superposição. Para maximizar o desempenho, primeiro você precisa selecionar uma boa medida de desempenho que capture elementos de risco e recompensa, bem como consistência (por exemplo, taxa Sharpe). O desvio excessivo ocorre quando o robô está muito próximo com dados anteriores; Esse robô vai dar a ilusão de alto desempenho, mas como o futuro nunca se assemelha completamente ao passado, ele pode realmente falhar.


Execução ao vivo: agora você está pronto para começar a usar dinheiro real. No entanto, além de estar preparado para os altos e baixos emocionais que você pode experimentar, existem alguns problemas técnicos que precisam ser abordados. Essas questões incluem selecionar um intermediário apropriado e implementar mecanismos para gerenciar riscos de mercado e riscos operacionais, como potenciais hackers e tempo de inatividade tecnológico. Também é importante nesta etapa verificar se o desempenho do robô é semelhante ao experimentado na fase de teste. Finalmente, o monitoramento contínuo é necessário para garantir que a eficiência do mercado que o robô foi projetado ainda existe. (Para mais, consulte: Como os Algoritmos de Negociação foram Criados.)


The Bottom Line.


Considerando que Richard Dennis, o lendário comerciante de commodities, ensinou a um grupo de estudantes suas estratégias de negociação pessoal que, em seguida, ganhou mais de US $ 175 milhões em apenas cinco anos, é completamente possível que os comerciantes inexperientes sejam ensinados com um conjunto rigoroso de diretrizes e se tornem comerciantes bem-sucedidos. No entanto, este é um exemplo extraordinário e os iniciantes definitivamente devem se lembrar de ter expectativas modestas.


Para ser bem sucedido, é importante não apenas seguir um conjunto de diretrizes, mas também entender como essas diretrizes estão funcionando. Liew enfatiza que a parte mais importante da negociação algorítmica é "entender em que tipos de condições de mercado o seu robô funcionará e quando vai quebrar" e "entender quando intervir". O comércio algorítmico pode ser gratificante, mas a chave para o sucesso é compreensão. Qualquer curso ou professor que prometa altas recompensas com mínima compreensão deve ser um sinal de alerta importante.


Como construir sua própria estratégia de negociação algorítmica.


Estratégia de negociação algorítmica.


Toda semana, recebemos inúmeras s nos perguntando como criamos nossa lucrativa estratégia de negociação algorítmica.


Em vez de tentar explicar nosso processo e raciocínio repetidamente através de chamadas de telefone e s, nós decidimos criar um vídeo detalhado sobre os 4 maiores obstáculos que os comerciantes ficam presos e como você pode construir sua própria estratégia de negociação algorítmica rentável.


Seu objetivo como comerciante é criar ou pelo menos usar uma estratégia de negociação vencedora. Não importa se você trocar manualmente, ou se é uma estratégia de negociação automatizada. Mas se você criar algo que ganha dinheiro, é natural que você se concentre em automatizá-lo para que você tenha sua própria estratégia de negociação algorítmica executando e trabalhando para você, enquanto você constrói sua próxima estratégia de negociação e # 8230;


Ao longo dos anos, eu gastei 10 milhares de dólares tentando descobrir quais são as chaves para uma estratégia comercial bem-sucedida. Eu quero compartilhar com você como eu crio estratégias de negociação algorítmicas lucrativas que funcionam em mercados em ascensão, queda e paralelos.


Como eu construí uma estratégia de negociação rentável e algorítmica; Como você também pode.


Deixe-me compartilhar com você minha jornada como comerciante na ordem em que as coisas me acontecem e como eu me tornei um usuário de estratégia de negociação algorítmica em tempo integral. Assista ao vídeo abaixo para obter detalhes e a oferta especial.


A Estratégia de Negociação Algorítmica atinge a Nova Marca de Água Alta de 30,7% ROI & # 8211; Comunicado de imprensa.


Compartilhe essa entrada.


Chris Vermeulen em Benzinga PreMarket TV Show & # 8211; Negociação automatizada.


Algorithmic Trading Strategies Performance & # 038; Educação para investidores.


Começando: Construindo um Sistema de Negociação Totalmente Automatizado.


Nos últimos 6 meses, fiquei focado no processo de construção da pilha de tecnologia completa de um sistema de negociação automatizado. Eu encontrei muitos desafios e aprendi muito sobre os dois métodos diferentes de backtesting (Vectorizado e Evento conduzido). Na minha jornada de construção de um backtester dirigido por um evento, surpreendi que o que você acabasse fosse perto da pilha de tecnologia completa necessária para construir uma estratégia, testá-la e executar a execução ao vivo.


O meu maior problema ao abordar o problema foi a falta de conhecimento. Olhei em muitos lugares para uma introdução à construção da tecnologia ou um blog que me guiaria. Encontrei alguns recursos que vou compartilhar com você hoje.


Para iniciantes:


Para os leitores novos para negociação quantitativa, eu recomendaria o livro de Ernie P. Chan intitulado: Negociação Quantitativa: como construir seu próprio negócio de negociação algorítmica. Este livro é o básico. Na verdade, é o primeiro livro que eu li em negociação quantitativa e, mesmo assim, achei muito básico, mas há algumas notas que você deveria tomar.


Da página 81-84 Ernie escreve sobre como no nível de varejo uma arquitetura de sistema pode ser dividida em estratégias semi-automáticas e totalmente automatizadas.


Um sistema semi-automatizado é adequado se você deseja fazer alguns negócios por semana. Ernie recomenda o uso de Matlab, R ou mesmo do Excel. Utilizei todas as 3 plataformas e este é o meu conselho:


Saltei Matlab, custou muito dinheiro e eu só consegui acesso aos laboratórios universitários. Não há muito material de treinamento como blogs ou livros que irão ensinar-lhe como codificar uma estratégia usando o Matlab. R tem toneladas de recursos que você pode usar para aprender a construir uma estratégia. Meu blog favorito abordando o tópico é: QuantStratTradeR executado por Ilya Kipnis. O Microsoft Excel é provavelmente o local onde você iniciará se você não tiver experiência de programação. Você pode usar o Excel para negociação semi-automatizada, mas não vai fazer o truque quando se trata de construir a pilha de tecnologia completa.


Quadro semi-automático pg 81.


Sistemas de negociação totalmente automatizados são para quando você deseja colocar negócios automaticamente com base em um feed de dados ao vivo. Eu codifiquei o meu em C #, QuantConnect também usa C #, QuantStart anda pelo leitor através da construção dele em Python, Quantopian usa Python, HFT provavelmente usará C ++. Java também é popular.


Estrutura de negociação totalmente automatizada pg 84.


Passo 1: Obter uma vantagem.


Faça o Programa Executivo em Negociação Algorítmica oferecido pela QuantInsti. Acabei de começar o curso e o primeiro conjunto de palestras foi na arquitetura do sistema. Isso me salvaria cerca de 3 meses de pesquisa se eu tivesse começado aqui. As palestras me acompanharam por cada componente que eu precisaria, bem como uma descrição detalhada do que cada componente precisa fazer. Abaixo está uma captura de tela de uma das suas lâminas utilizadas na apresentação:


Você também pode usar esse quadro geral ao avaliar outros sistemas de negociação automática.


No momento da escrita, estou apenas na terceira semana de palestras, mas estou confiante de que um profissional poderá construir uma estratégia de negociação totalmente automatizada que, com um pouco de polonês, possa ser transformada em um hedge fund quantitativo .


Nota: o curso não está focado na construção da pilha de tecnologia.


Etapa 2: codifique um backtester baseado em eventos básicos.


O blog de Michael Hallsmore e o quantstart & amp; livro "Negociação Algorítmica de Sucesso"


Este livro possui seções dedicadas à construção de um backtester dirigido por eventos robustos. Ele dirige o leitor através de uma série de capítulos que irão explicar sua escolha de linguagem, os diferentes tipos de backtesting, a importância do backtesting dirigido a eventos e como codificar o backtester.


Michael apresenta o leitor às diferentes classes necessárias em um design orientado a objetos. Ele também ensina o leitor a construir um banco de dados mestre de valores mobiliários. É aqui que você verá como a arquitetura do sistema da QuantInsti se encaixa.


Nota: Você precisará comprar seu livro: "Successful Algorithmic Trading", seu blog deixa para fora muita informação.


Passo 3: Vire a TuringFinance.


O programa EPAT Leitura "Successful Algorithmic Trading" & amp; codificando um backtester em um idioma diferente da sua escolha.


Você deve se mudar para um blog chamado TuringFinance e ler o artigo intitulado "Algorithmic Trading System Architecture" Por: Stuart Gordon Reid. Em sua publicação, ele descreve a arquitetura seguindo as diretrizes dos padrões ISO / IEC / IEEE 42010 e padrão de descrição de arquitetura de engenharia de software.


Eu achei esta publicação muito técnica e tem algumas ótimas idéias que você deve incorporar na sua própria arquitetura.


Uma captura de tela de sua postagem.


Passo 4: Estudar sistemas de comércio aberto.


4.1) Quantopian.


Escusado será dizer que Quantopian deve ser adicionado a esta lista e estou com vergonha de dizer que não passei muito tempo usando sua plataforma (devido à minha escolha de linguagem). Quantopian tem muitas vantagens, mas as que melhoram para mim são as seguintes:


Fácil de aprender Python Acesso gratuito a muitos conjuntos de dados Uma grande comunidade e competições Eu adoro como eles hospedam QuantCon!


Quantopian é líder de mercado neste campo e é amado por quants por toda parte! Seu projeto de código aberto está sob o nome de código Zipline e isso é um pouco sobre isso:


"Zipline é o nosso motor de código aberto que alimenta o backtester no IDE. Você pode ver o repositório de códigos no Github e contribuir com solicitações de envio para o projeto. Existe um grupo do Google disponível para procurar ajuda e facilitar discussões ".


Aqui está um link para sua documentação:


4.2) QuantConnect.


Para aqueles que não estão familiarizados com a QuantConnect, eles fornecem um mecanismo de troca algorítmica de código aberto completo. Aqui está um link.


Você deve dar uma olhada em seu código, estudá-lo, & amp; dar-lhes elogios. Eles são competição de Quantopians.


Gostaria de aproveitar esta oportunidade para agradecer a equipe da QuantConnect por me deixar escolher o cérebro e pelo brilhante serviço que eles oferecem.


Aqui está um link para sua documentação:


Observações finais:


Espero que este guia ajude os membros da comunidade. Eu queria ter essa visão 6 meses atrás, quando comecei a codificar nosso sistema.


Gostaria de chegar à comunidade e perguntar: "Quais bons cursos de negociação algorítmica você conhece?" Eu gostaria de escrever uma publicação que analisa o tópico e fornece uma classificação. Existem recomendações para a construção de um sistema de negociação totalmente automatizado que você gostaria de adicionar a esta publicação?


Compartilhar isso:


Compartilhe essa entrada.


Você pode gostar também.


Bom artigo. Eu gostaria de ter tido cerca de 6 meses atrás. Eu uso QuantConnect porque sou um programador C #. Achei muito conveniente poder fazer o download do teste Lean e back test localmente. Rummaging através do seu código também é valioso. Além disso, eles cortaram um acordo com a Trader por negócios de US $ 1. Isso ajuda muito. Não sou tão saliente sobre spreads e execução da Trader. O IB pode ser melhor para isso.


Vou dar uma olhada no curso que você mencionou.


Você não mencionou a Quantocracy ou RBloggers. Ambos são recursos muito valiosos.


O que você usa para traçar resultados de testes de volta? Eu logro os valores do OHLC e do indicador para csv do evento OnData e estou realmente cansado de usar o Excel para traçar os resultados. Gostaria de apontar um pacote de gráficos para um arquivo de dados e simplesmente ir.


Você ainda possui um fornecedor de caixas de seleção?


Tenho um pensamento sobre os sistemas dirigidos a eventos. O problema com os eventos é que eles são assíncronos e latentes. Parece que eles são inevitáveis ​​assim que você obtém uma corretora envolvida, então eu tenho sonhado com um sistema de streaming mais seguindo os princípios da programação funcional.


& # 8211; Injeste um fluxo de tiquetaque ou barra.


& # 8211; Execute-o através de um processo de cálculo de indicadores, execução de análise ou ML, e assim por diante.


& # 8211; Retornar um sinal.


& # 8211; Envie-o para o corretor para executar.


Em seguida, em um fluxo separado.


& # 8211; Receba uma resposta do corretor.


O problema, é claro, é o estado. Tenho margem suficiente para fazer o comércio? O que está no meu portfólio? Como está funcionando? Normalmente, o corretor api pode ser consultado para descobrir essas coisas, mas leva tempo e é assíncrono. Eu também estou olhando extensões Rx. Dessa forma, o sistema pode reagir às mudanças no sistema através do padrão observável.


Os eventos são ótimos para cliques no mouse. Não é tão bom para processamento transacional de alto volume.


Esta é exatamente a abordagem que tomei com minhas próprias coisas. Essencialmente, eu tenho um & # 8216; normal & # 8217; programa que envolve uma pequena parte que é conduzida a eventos para falar com o corretor (IB API). Agora, para o problema do estado. Você tem duas escolhas; obter o estado do corretor, ou armazená-lo internamente, atualizando-o quando você receber um preenchimento. Isso significa que há momentos em que você não conhece seu estado ou quando as duas fontes de estado estão potencialmente em conflito (dados ruins ou atrasos). Parte disso depende da rapidez com que você troca. A menos que você esteja negociando com muita rapidez, então, pausando se você tiver um conflito de estado, ou você está incerto de estado, é melhor do que prosseguir sem saber o seu estado. Eu uso um banco de dados & # 8216; lock & # 8217; paradigma para lidar com isso.


Quanto a quase tudo o que você pediu, você está perto da resposta em Reactive Extension (Rx).


Com Rx indo de tiques para velas é trivial.


Passar de Velas para Indicadores é trivial.


Indicadores de composição de outros indicadores é trivial.


Escrever Posições de Indicadores é trivial.


Composição de Portfolios (como realizada ao longo do tempo) das Posições é trivial.


Simular o modelo de risco é trivial.


Back testing ou trading live é simplesmente decidir entre uma transmissão ao vivo de dados ou uma repetição simulada de dados do banco de dados.


Executar é trivial.


A implementação é possível em tudo, desde C # até F # para JavaScript para C ++ em código quase idêntico.


A otimização é feita rapidamente porque o Rx puramente funcional é massivamente paralisável ao GPU.


É certo que a otimização e alimentação do efeito da otimização contínua de volta ao teste de back-back não é trivial, mas dado que não é trivial de qualquer maneira, eu irei deixar esse slide 😉


Puramente funcional (ou perto dela) A Rx é, na minha opinião, a única maneira de abordar a infraestrutura desse problema.


Conheço o sistema que quero negociar. Eu não quero programar ou aprender algo que alguém já conhece. Então, quem posso contratar para levar o sistema que eu quero usar e automatizá-lo. Por automatizar isso, quero dizer, eu não quero olhar para ele. Eu vou olhar os resultados uma vez por semana e os negócios serão executados sem a minha atenção. Parece estranho para mim que, em 2016, tanto esforço precisa seguir um conjunto de regras e ter essas regras executadas no meu corretor.


Eu sugeriria inscrever-se com o Quantopian e depois encontrar alguém dentro da comunidade lá para construir a estratégia para você. Eles serão capazes de construí-lo para você dentro da plataforma IB Brokers e ser totalmente automatizado.


Deixe-me dizer, porém, que acho que você deve monitorá-lo de perto, e não apenas "esqueça-o para" # 8221 ;.

Comments

Popular Posts